Pricing the negative externalities of freight transportation: A literature review

Daniel Rodriguez-Roman CEE298 - Project II June 4, 2012

Questions

- Why consider pricing strategies?
- Can pricing affect freight mode choice?
- Can freight deliveries in urban areas be shifted to off-peak hours using pricing programs?
- What other policy alternatives exist besides pricing?

CO₂ emissions in the US

CO₂ emissions in the EU

Freight transportation elasticities

Estimate

Graham, 2004

Rail vs. Truck

Movement

The full cost of road and intermodal freight transportation (Janic, 2007)

How to Stimulate Environmental Friendly Behaviour? (Buhler and Joachem, 2008)

- Discrete binary logit model estimated using data from 500 German forwarders.
- Two scenarios considered:
 - Increase in road user charges
 - Service improvements in intermodal facilities

Elasticities of choice probability

Attributes	Total	Large	Small
Autotics	Total	companies	companies
Share of commercial employees	_	-0.12	0.14
Trip distance	0.84	1.06	1.23
Used loading unit is a trailer	-0.38	-0.29	-0.51
Transport volume	0.33	-	0.44
Product characteristics: Perishable	-	-0.05	-
Service arrangements: Tracking & tracing	-0.24	-0.35	-0.30
Number of assignments on the corridor	-	0.03	-
Pairing of the trips on the corridor	-	-0.26	-
Period for the organisation of the trip	0.09	-	0.10
Frequency of service provision in combined transport	0,23	0.25	0.28
Direct connection of the combined service	0.09	-	0.11
Duration of the combined transport service	-0.46	-1.06	-0.48
Costs per kilometre of the combined transport service	-1.20	-0.89	-1.49
Costs per kilometre of the road transport service	0.74	0.78	0.80

Choice simulations

• Sample enumeration was used to simulate the mode choice response to road user charges.

Increasing costs due to road user charges	Unimodal	Combined transpo	rt
on German motorways	truck transport	Pre- and post haulage	total
N=498	7.34%	2.40%	0.75%

Off-peak hour deliveries

Interactions between carriers and receivers

Case Study: PANYNJ Time-of-Day Pricing Scheme (Holguin-Veras et al., 2006)

Toll schedule

Toll rates before and after the time of day pricing initiative

Type of vehicle	Passenger cars	Passenger cars		Trucks	
	Before	After	Before	After	
Cash peak	\$4.00/car	\$6.00/car	\$4.00/axle	\$6.00/axle	
Cash off-peak	\$4.00/car	\$6.00/car	\$4.00/axle	\$6.00/axle	
E-ZPass peak	\$3.60/car	\$5.00/car	\$3.60/axle	\$6.00/axle	
E-ZPass off-peak	\$3.60/car	\$4.00/car	\$3.60/axle	\$5.00/axle	
E-ZPass overnight			\$3.60/axle	\$3.50/axle	

Behavioral responses to the time-of-day pricing initiative

Why carriers did not respond to the time-of-day tolls

Reasons for not changing travel behavior

Reasons	For-hire carriers (%)	Private carriers (%)	Carriers that did not change (%)
No flexibility			
Cannot change schedule due to customer requirements	72.3	61.0	68.9
Must use quickest route	3.3	13.6	6.4
Cost paid by others			
Customers absorb costs	19.1	15.9	18.2
Cost paid by shippers	0.0	0.4	0.1
Cost paid by receivers	2.1	0.0	1.5
Small price difference/can afford it	0.2	6.1	2.0
No change in off-peak travel cost	0.3	0.4	0.4
Do not know/refused	2.6	2.5	2.6
Total	100.0	100.0	100.0
Total truck trips	573	245	817

Necessary condition for off-peak hour deliveries (Holguin-Veras, 2008)

• To illustrate the analytical approach, consider the following necessary conditions for offpeak hour deliveries to be feasible in the case of independent carrier-receiver operations:

Time-Distance pricing (Holguin-Veras, 2011)

"The paper established the presence of a market failure that prevents the urban delivery industry to reach the most efficient outcome, i.e., offhour deliveries."

Cost-benefits of allowing night-time deliveries

Group	Costs	Benefits
Retailers receiving fewer restrictions	 Cost of noise abatement policies and measures 	 Distribution costs RDC costs Journey reliability Improved sales Less produce waste
Shoppers		Fresher perishable productsImproved availability in morning
Residents	 More noise disturbance at night Disturbance by lights at delivery point 	 Fewer lorry trips in day-time Less noise in day-time Fewer vehicle trips in total Less traffic pollution in total
Other road users		 Fewer lorries on roads in day Fewer vehicle trips in total Less traffic pollution in total Reduced risk of lorry related accidents Reduction in congestion at the delivery point
Society/economy	 Reduced retail sales for other local retailers 	 Reduction in total vehicle fuel consumption for delivery to stores Fewer total vehicle kilometres Economic growth in quiet distribution equipment sector

Unintended consequences of night-time deliveries (Sathaye et al. 2010)

Permits

Joachem, 2010

Conclusions

- Freight transportation decision are the result of complex interactions between multiple agents
- On its own, pricing appears to have limited effect on the behavior of freight agents
- Additional research is required to ascertain the effectiveness of pricing strategies in conjunction with complementary policies

Thank you! Questions?